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A version of boundary integral equations of the first kind in dynamic problems of the theory of elasticity is proposed, based on 
an investigation of the analytic properties of the Fourier transformant of the displacement vector, rather than on fundamental 
solutions. A system of three boundary integral equations of the first kind with Fredholm kernels is constructed, and the equivalence 
of the initial boundary-value problem on the vibrations of a bounded region and the system of boundary integral equations obtained 
is investigated. A version of the numerical realization, which combines the ideas of the classical method of boundary elements 
and the Tikhonov regularization method, is proposed. The results of numerical experiments are given. © 1998 Elsevier Science 
Ltd. All rights reserved. 

When investigating dynamic problems of the theory of elasticity, the classical version of the method of 
boundary integral equations, based on a knowledge of the fundamental solutions [1, 2], enables one to 
obtain a solution inside the region using Somigliana integral operators, the kernels of which are expressed 
in terms of the fundamental Kupradze matrix, and have singularities. In a number of cases (in problems 
of the anisotropic theory of elasticity, in axisymmetric problems of the isotropic theory of elasticity, 
and problems of electroelasticity), the fundamental solutions cannot be expressed in explicit form. 
Integral representations of the fundamental solutions for plane problems of the anisotropic theory of 
elasticity have been constructed [3, 4], but their further practical application (the realization of a version 
of the method of boundary elements) requires the evaluation of multiple integrals when setting up 
appropriate algebraic systems. An alternative formulation of boundary integral equations of the first 
kind was proposed in [5] in dynamic problems of the anisotropic theory of elasticity, which does not 
require a knowledge of the fundamental solutions and which is based solely on an analysis of the charac- 
teristic polynomial of the operator of the theory of elasticity, on the assumption that the characteristic 
surfaces do not intersect. Unfortunately, in the isotropic theory of elasticity two of the characteristic 
surfaces coincide, and the proposed approach requires a more careful examination. Note that the ideas 
related to the investigation of the analyticity of the Fourier transformation and the formulation of the 
boundary integral equations were apparently first described in [6] when obtaining boundary integral 
equations of the first kind in the problem of the vibrations of a half-space with a rough boundary. 

1. F O R M U L A T I O N  O F  T H E  B O U N D A R Y  I N T E G R A L  E Q U A T I O N S  O F  
T H E  F I R S T  K I N D  I N  T H R E E - D I M E N S I O N A L  D Y N A M I C  P R O B L E M S  

O F  T H E  I S O T R O P I C  T H E O R Y  O F  E L A S T I C I T Y  

Consider the steady vibrations of an elastic solid, occupying a simply connected region V C R 3, star- 
like with respect to a certain sphere, with a piecewise-smooth boundary S. The equations of the steady 
vibrations of an isotropic elastic solid of density p with frequency co have the form [7] 

V.T + p(02u = 0 (1.1) 

where u is the displacement vector, T is the Cauchy stress tensor, and e is the linear strain tensor 

[ v V.uE+e], e=½tvu+(vu) rl T=2~t l - 2 v  (1.2) 
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We will assume that the following boundary conditions are specified 

uls =f ,  t ,  l s ,=g ,  t . = n . T ,  S = S , , u S  a (1.3) 

We will construct a system of boundary integral equations of the first kind based on ideas proposed 
earlier in [5]. We will assume that the boundary-value problem (1.1)-(1.3) has a solution u ~ I~2(10 
for sufficiently smooth vector functions f and g. We carry out an integral Fourier transformation of Eq. 
(1.1) with parameter a = (al, 12, 13), for which we multiply Eq. (1.1) by e ia'x and integrate it over the 
region V. Converting the volume integrals into surface integrals using the Gauss-Ostrogradskii theorem, 
we obtain 

where 

~t , x=(k ta .a -p to  2) (1.4) 
~aa .6+  x6=u(a), 13=1_2v 

v(a )  = [ t~e'U'x d S  - 2 ~ v i a  [ n . uei~'x d S  - Ixia . [ (nu + u n  )e~a'X d S  
S S s 

(1.5) 

6 = ~ ueiCt'XdV 
v 

and n is the unit vector normal to the surface S. Expanding relation (1.4) in components of the vector 
u, we obtain 

= - am), r ~  = - l l a m a  n, n ~ m 
(1.6) 

We know that the Fourier transformation of the vector function u e W~X(V), where V is a simply 
connected region, star-like with respect to a certain sphere, is an exponential-type integral function [8] 
by virtue of the limit 

la( )l Cexp[maxixl.iImalq 
L x~V .I 

However, in view of representation (1.6), the principal part of the Laurent series of vector functions u 
is not identically equal to zero, since the components of u have simple poles and zeros A, i.e. when the 
hodograph of the vector a lies on spheres 

where 

a = k~rl and a = k2rl (1.7) 

k? : c-Y' c?=  p , p 

= (cos 0 cos ~, cos 0 sin ~,sin 0), 1111 = 1, 0 ~< ~ < 2n, - --~ ~< 0 ~< 
2 2 

and cl anti c2 are the velocities of propagation of longitudinal and transverse waves. 
To eliminate the contradiction which arises it is necessary to require that the coefficients of the principal 

part of the Laurent series should vanish, i.e. the residues on these spheres. Since the poles are simple, 
it is sufficient to require that R.v should vanish when a takes the values (1.7). 

Suppose a = kl~. Then, starting from relation (1.6), we obtain a linear system of equations in the 
components of the vector v, whence we find the first resolvent, which relates the components of the 
stress and strain vectors on the boundary of the region 

1"11 p ! ( k l ~ )  + ~2  U 2 (kl 'q)  + ~3 O 3 (klrl) = 0 (1.8) 

Suppose how that a = k2•. Then, as previously, we find the first and third resolvents 
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rl3u i (k2rl) - rip 3 (k2rl) = O, rhU 2 (k2~) - 1]~ 3 (k21]) = 0 (1.9) 

Thus, problem (1.1)-(1.3) reduces to solving a system of resolvents (1.8) and (1.9), which can be written 
in the form 

f K ~ (x, rl)" tn  (x)dS + f K" (x, 1]). u(x)dS = 0 
s s 

I An I + B'q I An 2 + BI12 An3 + BI] 3 

K"  = lxis" ~ Drl z - B113 Drl2 B~l + D~3 
fl 
II an3 + Crl2 

I rll ~2 113 

g a = e .  113 O --1] I 

0 - r  b 112 

s = diag(-2kte t , k2e 2, k2e2 ), e = diag{e I , e 2 , e 2 ), 

V 
A = I-2"'~' B=n.1], 

ej = exp[ikj1], x] 

C=  1]xil .n, D =  1]xi2.n  

(1.10) 

Taking boundary conditions (1.3) into account, we obtain that the initial problem reduces to a system 
of integral equations of the first kind with Fredholm kernels K°(x, rl), K"(x, ri) defined on a Cartesian 
product S x $1 ($1 is the unit sphere 111 I = 1) 

j 'K°(x,  rl). tn(x)dS+ SKU(x,~) • u(x)dS = F(1]), Illl = 1 
s. So 

(1.11) 

where 

-F(1]) = [ K ° (x, n)" g(x)dS + S K" (x, 1]). f(x)dS 
sa s, 

Relations (1.11) are a system of boundary integral equations which relate the unknown components 
of the stress vector tnlSu and the strain displacement Ulsa. 

Note that the kernels Ka(x, rl), KU(x, 1]) are infinitely differentiable with respect to the variable 1]/ 
(j = 1, 2, 3), while if the surface S is a Lyapunov surface, i.e. a surface of the class C 0'0, we have 

KU(x ,q )eCt° ,O(S)xC ' (S l ) ,  Ka(x,rl)eC**(S)xC**(Si), 0 < ~ < 1  

We know that the procedure for inverting Fredholm operators of the first kind, generally speaking, 
is an ill-posed problem, in view of the unboundedness of the inverse operator to (1.11) [9]. This situation 
is typical for Fredholm operators of the first kind with an arbitrary right-hand side F01) from a certain 
class of functions. However, in a specific case, F0]), according to (1.11), has an extremely specific form, 
and this fact enables us to judge whether the inverse operator is bounded, on the basis of the solvability 

1 of the initial problem in W~(V) and the theorem of equivalence. 

Theorem. Suppose V C R 3 is a simply connected region with a piecewise-smooth boundary S. Then 
boundary-value problem (1.1)-(1.3) is equivalent to the problem of finding the boundary values tnlsu 
from integral equations (1.11). 

Proof. Note that the system of boundary integral equations (1.11) is a consequence of boundary-value 
problem (1.1)-(1.3) by construction. We will show that if Ulsa and tnlsu are a solution of system (1.11), 
they can be extended inside the region V, and the equations of motion (1.1) and Hooke's law (1.2) will 
be satisfied inside V. 

Suppose the vector functions n and tn are a solution of boundary integral equations (1.11). We will 
introduce an integral vector function v, as given by (1.5), and a vector function u(tx), as given by (1.6). 
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By virtue of the system of  boundary integral equations (1.11), ~(d) are exponential-type integral func- 
tions, and by virtue of  the Paley-Wiener theorem [10] are a Fourier transformation with carrier in V. 
It can be shown that the vector function 

1 ]fi(a)e_ia.,,dot u ( x )  = ~ a 3 (1.12) 

satisfies Eqs (1.1) and (1.2) by construction, in which case (1.6) is satisfied. Note that the elements of 
the matrix R possess the property R ( t ~  tto) = t2R(0t, to). We will show that for a vector function defined 
by (1.12) and (1,6), boundary conditions (1.3) will also be satisfied. 

In fact, suppose y ~ Su is a regular point on the boundary. We will prove that 

lira u(x)= f(y) 
x~yeSu 

To do this we consider a sphere Vt(Y) with centre at the point y and of radius e > 0. We introduce the region 
Vie = V U Vt(y), denote its boundary by $1~ and write Eqs (1.5) for Sly Then 

lim u(x)= limut(y) 
x-~y~, ~ 0  

where he(y) is defined by (1,12) and (1.6), but instead of v(cx) we need to take vt(a). We will represent the integral 
over SIt in the form of the sum of two integrals over Se and over S+(y), where St is the part of the surface S lying 
outside the sphere Vt(Y), while S~+(y) is the part of the sphere, bounding Vt(y), lying outside V. 

The first integral in the limit as e ~ 0 gives the integral in the sense of the Canchy principal value T(y). In the 
second integral we change the variables 

x-y=eq, a=e-]y,  l'ql=l 

Further, we take into account the fact that 

A(E-I%m) = E"4[g 2 [Y 14 +o(e 2)], R(E-IY, ¢°) = E-2[R0(Y)+°( c2)1, E --~ 0 (1.13) 

and u(y + ell) = u(y) + o(e), where R0(r/) = t2R0(¥). By evaluating the integral over S+(y) and taking into account 
the fact that on this surface n = rl, we obtain 

u(y) = TLV) + ~)/2 (1.14) 

Proceeding in a similar way for the case when x ~ V, we obtain 

0 -- r ~ )  - if.v)/'2 (1.15) 

Hence, by virtue of (1.14) and (1.15) the first of the limit relations (1.3) is proved. 
To prove the second limit relation, we obtain from (1.2) the stress vector tn -- n.T, taking (1.12) into account. Then 

~C*)(a) --A-t (a, to)Q(ct, co, n)-v(c0 

and the elements of the matrix Q(a, co, n) depend linearly on n and possess the property 

Q(ta, t~, n) = t3Q(a, ¢~, n), t > 0 

Suppose y ¢ Sa. The procedure for proving the limit relation as a whole is a repetition of the previous construction, 
taking into account the fact that 

Q(~-i,t, o~, n) = ~-3[Oa~('t)n + ofe2)], ~ ~ 0 

(the sole difference from the above case is the fact that the limit of the integral over S~ is understood in the sense 
of a finite Hadamard value). 

Notes. 1. These equations can be conveniently used instead of the classical equations when it is required to 
determine only the boundary values of the unknowns, i.e. for example, when finding contact stresses, or when 
determining the displacement field on the stress-free part of the surface. Moreover, these equations can also be 
used when both the displacements and the stress vector are known on one part of the surface but the boundary 
conditions on the other part are unknown. This system of boundary integral equations then also enables one to 
determine the unknown boundary conditions if the method of quasisolutions is employed [11]. 



Boundary integral equations and their application to dynamic 3-D elasticity problems 431 

2. When to = 0, the system of boundary integral equations (1.11) serves as the condition for the solvability of 
the corresponding static problem of the theory of elasticity. 

2. AXIALLY S Y M M E T R I C  D E F O R M A T I O N  OF 
A SOLID OF R E V O L U T I O N  

In the case of the axially symmetric deformation of a solid of revolution, we can put ~12 = 0 in (1.8) 
and (1.9) and, changing to a polar system of coordinates, we can integrate over the coordinate q~. The 
kernels of integral equations (1.11) can then be expressed in terms of Bessel functions, and the integration 
is carried out over the generatrix of the solid of revolution L. 

Suppose the region V occupied by the solid of revolution is given by the equation 

r = ~(z), a ~< z ~ b, S = L x [0; 2n) 

Then the vector of the outward normal has the form 

n z ~ ~  n = n r e  r +nze z, n, 3/1+(q~,)2 , 

where e,, ez are the basis vectors in a polar system of coordinates. After integrating over the coordinate 
(p from 0 to 2n, boundary integral equation (1.11) takes the form 

S K°(r,z, rll ,~3)" tn(r , z )dL+ JK"(r , z ,  rh ,n3)" u(r ,z)dL = F(r, z) 
t,, t~ 

(2.1) 

where 

-F(r,z) = J Ka(r ,z ,  lll,r]3) .g(r,z)dL + SKU(r,z,1]l,1]3) . f ( r , z )dL 
La Lu 

L = z,,, =1  

Here L ,  is the generatrix of the surface S, and La is the generatrix of the surface So. The  kernels of 
boundary integral equation (1.11) in the axisymmetric case can be expressed by the following formulae 

I[ 
AI (Go! - G21 ) + A2GII 0 A3Gol + A4GII 

Ku =It BI(G02 -G22)+B2G02 B4GI2 + BsG02 
0 

0 

0 ClG22 + C2GI2 

I /0iGl! 0 ~3Gol 

K° =!/03:12 /03GI20 -rlt Go20 

i = 0,1,2; j = l , 2  

A 2 = 2kl~ll]3nz, 

Gij = Ji(kjl]lr) ,  

A I = iklnr(A + 112), A 3 = 2ikln z (A + rl] ) 

A 4 --2kiTllrl3nr, Bj _ik2~3n~ ' 1~ z 2 2 = = k2n~(T13 - I~trl~ ) 

B 4 = k2n,(n] - rl~ ), Bs = -2k2•l•3n z, Ct = ik2nln3nr, C2 = ~nIn¢  

Here the following vectors serve as the unknowns 

t n (r, z) Is. = trer + t~% + tze z, u(r, z) Is. = u,e, + %% + Uze, 

Note that when the vector functions g(r, z) and f(r, z) have a special form, the initial axisymmetric 
problem can be split into the problem of the longitudinal vibrations of a solid of revolution u = 
ur(r, Z)er + uz(r, z)% and torsional vibrations u = u¢(r, z)%. 
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3. THE T O R S I O N  P R O B L E M  

We will consider the axially symmetric problem of the steady torsional vibrations of an isotropic elastic 
beam with a variable cross-section and an axis of symmetry which coincides with the z axis. We will 
assume that 

f = f ( r ,  z)e¢, g = g(r, z)e¢ 

and we will seek a solution in the form 

u(r, z)  = u,(r, z)% 

This problem is a special case of the problem considered in Section 2. 
The difference between the torsion problem and the general case is the fact that, in the axially symmetric 

problem of the torsion of a beam, the structure of the Cauchy stress tensor and the structure of the 
displacement vector are such that the first two equations of the system of boundary integral equations 
(2.1) are satisfied identically. Hence, the torsion problem reduces to the boundary integral equation 

KO(r,z, rll,rl3) • tn(r,z)dL+ ~KU(r,z, rh,rl3), u(r,z)dL = F(r,z) 
Lu Los 

(3.1) 

where 

-F( r , z )=  ~Ka(r,z, rll,~3).g(r,z)dL + ~KU(r,z, rll,rl3)'f(r,z)dL 
L a Lu 

TI~ +112 = 1, K ° =/~3G12%, K ~ = (CIG22 +C2GI2) % 

4. DISCRETIZATION OF THE PROBLEM IN THE AXISYMMETRIC CASE 

To solve the system of boundary integral equations, obtained in Section 3, we will use the ideas of 
the classical method of boundary integral equations [12]. To do this we split the surface S into elements 
Sq, each of which is part of a surface of revolution enclosed between two parallel planes, perpendicular 
to the axis of symmetry of the solid of revolution. According to the boundary-element method, the 
displacements and forces are specified in the form of piecewise-interpolating functions (assumed constant 
in the simplest case) on each of the elements Sq. 

We will consider the torsion problem and the corresponding boundary integral equation (3.1). We 
introduce the partitions 

N M 
L, = ~,Luq, L o = ~,L~q (4.1) 

q=l q=l 

and we use a piecewise-constant approximation of the initial functions on each element. We introduce 
the notation 

tn~lt~q=Xq, q = l  ..... N; %[ t~=Yq,  q = l  ..... M (4.2) 

Suppose {~p~ = x is a certain set of collocation points (everywhere henceforthp = 1 , . . . ,  P). 
We will require that boundary integral equation (3.1) is satisfied when 1] runs through the set of col- 

location points. Taking the partitions (4.1) and approximation (4.2) into account, we obtain 

N M 

q~=lAmXq +q~=lBmYq = Fp (4.3) 

apq= I K~(qp)dL, q=l ..... N; Bpq= IK~(rlp)dL, q=l  ..... M 
4,q 

N M 

where fq and gq are the averaged values of the functions f and g on the elements Lug, L6q. 
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To calculate F e one can also use the Gauss quadrature formulae, but it is this method of calculating 
Fp in terms of the nodal values offq and gq that enables one to obtain a discrete operator in which the 
orders of the approximation errors of the left- and right-hand sides are the same. This is essential when 
inverting a completely continuous operator [9]. 

Thus, system (4.3) is a discrete analogue of boundary integral equation (3.1). 

5. N U M E R I C A L  E X A M P L E  

We will consider, as an example, the problem of the steady torsional vibrations of an isotropic elastic cylindrical 
beam of height 22 and radius a. Suppose the lower base z = - / i s  rigidly clamped while the displacements u = pre~ 
are specified on the upper basez =/ ,  and the side surface is stress-flee In = 0. The discrete analogue of the boundary 
integral equation for this torsion problem was presented in Section 4. Numerical experiments showed that, to obtain 
the maximum effective results, one needs to separate the imaginary and real parts of Eq. (4.3), and then each 
of these systems must be satisfied, for example, when 0 ~< ~ ~ ~ and ~ < ¥ < 21t, thereby forming a square 
matrix of  the equations of  these systems. This algorithm for setting up the system enables one to avoid the linear 
dependence of  the equations, which arises when only the real part or the imaginary part of  the system is used, 
when 0 ~ ~F ~ 2n. 

However, the matrix of the discrete operator (4.3) is ill-conditioned, which is a direct consequence of  the fact 
that the procedure for inverting a completely continuous operator is ill-posed. Hence, to find the required boundary 
values from Eq. (4.3) one needs to use special algorithms, for example, Tikhonov's method or the Paige-Saunders 
algorithm [13], used in this paper. The solution obtained differs from the exact solution by less than 1% when 
M + N = 3 0 .  

To determine the resonance frequencies we introduce the amplitude function A = maxql Xq I, which takes the 
maximum value from all the values of the required unknowns, obtained on the boundary. A considerable increase 
in the amplitude function is observed in the neighbourhood of the resonance frequencies. A graph of the amplitude 
function in the neighbourhood of the first and second resonance frequencies for l/a = 1 is shown in the Fig. 1. 

Table 1 presents exact frequencies k* and calculated frequencies k for l/a = 1. Note that when M + N = 30 all 
the significant digits of the first four resonance frequencies k, and k* given in the table are identical. 

Table I 

I k . - k ~ l x  105 

N= 9 N = 15 

102 33 
54 21 
38 12 
177 61 

I~7080 
3.14159 
4.71239 
628319 
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It is interesting to note that if we consider only the real or imaginary parts of the boundary integral equation, 
this algorithm enables one to determine either even or odd resonance frequencies (the number of the frequencies). 
However, this does not mean that it is inadmissible to use the complex or imaginary parts of the boundary integral 
equation separately. As practical experiments show, if the required functions are odd (even), the solution obtained 
using only the imaginary (real) part approximates quite well to the exact solution. 

This research was suppor ted  by the Russian Founda t ion  for Basic Research  (97-01-00633). 
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